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Morphology of Growing Interracial Patterns 

Debashish Chowdhury 1'2 
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A study is made of the morphology of the interfacial patterns in the solid-on- 
solid model evolving from initial states very far from equilibrium. Monte Carlo 
simulation is used to study the time dependence of the length, the diffuseness, 
and the width of the interface during such evolution in the absence as well 
as in the presence of quenched random field. Moreover, the technique of 
Walsh-Fourier transform is introduced for analyzing the noise level in such 
interfacial patterns. A quantity is also introduced that characterizes the inter- 
facial structure locally on a very short length scale. Finally, the latter technique 
is also applied to the kinetic Ising model evolving from a random initial 
configuration. 
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1. I N T R O D U C T I O N  

F o r m a t i o n  and  g rowth  of fractal  pa t t e rns  (1 3) as well as nonfrac ta l  

pa t t e rns  (4) in physical  systems has a t t r ac ted  much  a t t en t ion  dur ing  the last  
few years. So far as the nonf rac ta l  pa t t e rns  are concerned,  theore t ica l  
descr ip t ions  of  the t empora l  evo lu t ion  of  systems from simple s tructureless  
init ial  states to complex  stable (or  s teady)  states or  vice versa have been 
fo rmula ted  in terms of  non l inea r  differential  equa t ions  of  mot ion .  Since 
exact  so lu t ions  of  these non l inea r  differential  equa t ions  are mos t  often 
unavai lable ,  and  since a p p r o x i m a t i o n s  tha t  m a k e  ana ly t ica l  so lu t ions  
possible  often miss some of  the essential  features of the p rob lem,  c o m p u t e r  
s imula t ions  have he lped  eno rmous ly  in quant i ta t ive ,  albei t  app rox ima te ,  
unde r s t and ing  of these phenomena .  (s'6) In  this paper ,  using compu te r  
s imula t ion  techniques,  we invest igate  some new aspects  of the fo rma t ion  
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of nonfractal ordered structures in freely equilibrating model systems 
beginning from unstable initial states which are randomJ 7'8~ 

The growth of the domains of up (or down) spins in an Ising model 
following an instantaneous quench from a very high temperature Th to a 
low temperature Tl below the coexistence curve is the prototype of the 
freely equilibrating systems. At least two quantities characterizing such 
growing patterns have been studied quite extensively. First, the average 
linear size R of the domains grow with time t according to the Allen-Cahn 
growth law R ( t ) ~  t 1/2 in the kinetic Ising model with nonconserved order 
parameter (the so-called Glauber dynamics). This growth law describes 
only the rate of growth of the average size of the domains in terms of a 
single characteristic length scale R(t). Moreover, the observation (9) that the 
structure function has a scaling form implies that the domains are 
statistically self-similar during the temporal evolution. The curvature 
invariants (1~ go one step further in characterizing these random interfacial 
patterns. However, despite all the progress in the analysis of the fractal 
patterns in terms of the various exponents, e.g., fractal dimension, spectral 
dimension, etc., very little attention has been paid to the detailed 
morphology of growing nonfractal interfacial patterns. 

The interfacial instability and pattern selection in diverse physical 
situations, e.g., directional solidification, ~4) viscous fingering in Hele-Shaw 
cells, (6) has attracted much attention in recent years. Moreover, it has also 
been realized that the theoretical analysis of the domain growth problems 
(e.g., that in the kinetic Ising model) is more convenient in terms of the 
motion of the interfaces separating the different phases. (9 12) In addition, 
the dynamical evolution of the growing surface profile of the Eden 
model(~3 ~7~ has thrown some light on the morphology of growing surfaces. 
The recent modeling of growing interfaces by self-avoiding walks (18) also 
provides insight into certain aspects of interfacial motion. The main aim of 
this paper is to develop systematic methods of studying the dynamics of 
interfacial structures in a class of simple growing patterns with strong 
emphasis, on the morphology. Most often our discussion will be based on the 
solid-on-solid (SOS) model as a simple example. We also occasionally con- 
centrate on the kinetic Ising model. The effect of random external fields on 
the growth of domains from unstable initial states of the Ising model has 
received some attention during the last few years. The random field tends 
to pin the interface, thereby slowing down the growth. However, most of 
the simulations ~19-21) have been carried out for the Ising model on discrete 
lattices, whereas the analytical theories (22 24) have been developed for the 
simple SOS models. In this paper we study the effects of the random exter- 
nal fields on the time evolution of the SOS model beginning from an initial 
state far from equilibrium. However, unlike the earlier studies, we not only 
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study the time dependence of the average domain size, but we also compare 
and contrast some other aspects of the morphology of the interfacial 
patterns growing in the presence of random external fields with those 
growing in the absence of random fields. A short summary of Sections 7 
and 8 is being published elsewhere. 

2. THE M O D E L S  

Most of our discussions in this paper will be based on two models, the 
kinetic Ising model and the solid-on-solid (SOS) model. 

2.1. The Kinetic Ising Mode l  

The Hamiltonian for the Ising model with nearest neighbor exchange 
interaction J is given by 

- s  E sis  (1) 
( ij> 

where the Ising spin at the ith site, Si, can have only two possible values, 
+ 1 and - 1. So far as the dynamical evolution of the system is concerned, 
we study only the single-spin-flip dynamics, which is also called the 
Glauber dynamics. The magnetization of the system is not conserved 
during time evolution. 

2.2. The SOS Mode l  

Consider a two-dimensional Ising model with nearest neighbor 
interactions. The interface separating the up spins from the down spins is a 
multiple-valued function z = f ( x )  of x, because of the existence of droplets 
and overhangs. Such droplets and overhangs are not allowed in the so- 
called SOS model, so that the interface z = f ( x )  is a single-valued function 
of x. On a discrete d-dimensional lattice the interface is represented as 
single-valued function z =f( i ) ,  where i = 1, 2,..., N is the coordinate labeling 
the lattice sites in the (d-1)-dimensional hyperplane transverse to the 
z direction. Since droplets and overhangs appear as excitations in the Ising 
model at not too low temperatures, the SOS model is a good 
approximation to the Ising model at low temperatures. The effective 
I-Iamiltonian for the SOS model in d dimensions is given by 

3r a = J N  d-1 + (J/2) ~" [f(i)--f(j)l (2) 
<,j> 
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where the sum (0") denotes a sum over nearest neighbor columns i and j. 
It is straightforward to verify that the ground state of the SOS model 
corresponds to a flat, smooth interface, i.e., f(i)= const for all i. For all 
temperatures 0 < T <  TR, the interface is not flat, but smooth, whereas for 
T >  TR the interface is rough. (The width of a rough interface, as opposed 
to a smooth one, goes to infinity as the interface size goes to infinity.) The 
temperature TR is called the roughening temperature. TR = 0 in d =  2. Note 
also that the mathematical simplicity of the SOS model is achieved at the 
cost of an infinitely large transition temperature, Tc---~. For the 
derivation of the (coarse-grained) field-theoretic interface Hamiltonians 
and comparison with the discrete SOS model (2), see the excellent 
discussion in Ref. 25. 

In the presence of random external fields (26) there is an additional term 
in the Hamiltonian representing the contribution from the interaction of 
each of the spins Si with the corresponding local random field Hi, namely 

HiSi. From now on we always assume that the distribution of the 
random local fields H i is P(Hi)= 0.5[6(Hi-H)+ 6(Hi+ H)].  

3. M O N T E  CARLO S I M U L A T I O N  OF THE M O D E L S  

Using Monte Carlo simulation, we investigate the morphology of the 
patterns in the kinetic Ising model and the SOS model during evolution 
from random initial states which are far from the corresponding 
equilibrium configurations. Initially, each of the spins is randomly up or 
down with equal probability. This random configuration is the equilibrium 
configuration corresponding to an infinitely high temperature, far from the 
equilibrium configuration at any finite temperature T. Therefore, the 
random initial configuration at a finite temperature T is equivalent to 
quenching the spin system from infinitely high temperature Th = ~ to a 
finite low temperature T. The well-known Metropolis updating scheme is 
used to update the spin configuration. An arbitrary spin is chosen 
randomly for updating. If the proposed energy change AE associated with 
the spin flip is less than or equal to zero, the spin is flipped; otherwise, the 
flipping is carried out with a probability exp(-AE/kBT). (27) Updating N 
spins in an N-spin system constitutes one Monte Carlo step (MCS) per 
spin. Time is measured in units of MCS. Note that magnetization is not 
conserved in this dynamical scheme, in contrast to the Kawasaki spin- 
exchange mechanism, where magnetization is conserved. 

So far as the SOS model is concerned, a random initial configuration 
of z = f ( i )  [0 <~f(i)<~ M for 1 ~< i~< N] is created using a random number 
generator. Let us assume that the spins below the interface are all up and 
those above it are all down. A periodic boundary condition is applied in 
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the plane transverse to the z direction (from now on the direction trans- 
verse to the z direction will be denoted by x for d =  2). The flipping of an 
Ising spin at x = k just below the interface is equivalent to decreasing f(k) 
by unity. Similarly, flipping an Ising spin at x = k just above the interface is 
equivalent to increasing f(k) by unity. Since no droplet or overhang is 
allowed in the SOS model, only the spins just above and just below the 
interface are allowed to flip. The same Metropolis algorithm is applied also 
for updating the variables f(i) in the SOS model. ~28) Since ~f( i )  is not 
conserved during the simulation, our algorithm is similar to the Glauber 
dynamics. Most of our simulations have been carried out in d =  2. 

4. H O W  LONG IS THE INTERFACE? 

Let us now analyze the morphology of the interface of the SOS model 
far from the ground state. First, let us focus on the global morphological 
features of the interfacial pattern. The length of the interface L(t) is defined 
a s  

i = l  

where ( . )  denotes average over a large number of quenches. 

4.1. Length of  the Interface in the Absence of  Random Field 

In the case of the SOS model we begin with a random initial 
configuration. As the system evolves with time, the interface shrinks. We 
monitored L(t) as a function of time t (measured in units of MCS/site). We 
made the following observations (See Fig. 1): 

(a) The growth law for the interface of the SOS model in the early 
and intermediate time regimes is 

L(t)=L(O)(1-~t x) with x = l  (4) 

where ~ is a constant; this growth law should not be confused with the 
Allen-Cahn growth law for the kinetic Ising model, because of the basic 
differences in the two models discussed in Section 2. 

(b) The constant ~ depends on the initial length L(0) of the interface; 
the larger is L(0), the smaller is the corresponding ~. 

The interpretation of the observation (b) is quite straightforward. The 
length of the interface of the SOS model at equilibrium at T--0o is, in 
principle, infinite. Therefore, for the SOS model, the larger L(0) value 
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Fig. 1. Log-log plots of 1-L(t) /L(0) against t for the two-dimensional SOS model with 
N=128 at various temperatures T for several values of M: (O) M=2048, T=0;  
(�9 M=2048, T=4.0; ( n )  M=4096, T=0;  ( ~ )  M=4096, T=4.0; (*) M=4096, T= 8.0; 
( . )  M=32768, T= 1.0. Each of the data points was obtained by averaging over 100 
quenches. 

corresponds to higher Th. In other words, the smaller is the L(0), the lower 
is the equivalent Th. Therefore, finite L(0) for the SOS model at any finite 
temperature T can be interpreted as a two-stage quench where the first step 
corresponds to quenching from T= ov to T= Th; L(0) is the length of the 
interface at equilibrium at T= Th. The second step of the quenching 
process corresponds to quenching from T= Th to the temperature T. The 
effect of such two-stage quenches on the growth processes have been 
studied in experiments on intercalated compounds (29) as well as by com- 
puter simulation of Q-state Potts model. {3~ Both investigations indicated 
that the growth law for the two-stage quench differs from that for the 
corresponding one-stage process. Of course, our model is neither exactly 
equivalent to that of Dasgupta and Pandit, nor can it be applied directly to 
the experiments of Hommaa and Clarke. Nevertheless, our observation (b) 
is qualitatively similar to theirs except for the fact that the variation of the 
quenching procedure affects only the prefactor ~ and not the exponent x. 

(e) In the late stage of temporal evolution, there is a crossover from 
the linear growth law (4) to a new regime, which we have not investigated 
in detail. 
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It is worth mentioning here that the time evolution of the domains in a 
one-dimensional model of interacting kinks has been analyzed. (31) 
However, the analytical treatment of this model is much simpler that the 
two-dimensional SOS model, because the kinks and antikinks must appear 
alternately in the former, but not necessarily in the latter. Therefore, the 
dynamical evolution of the interface in the Nagai-Kawasaki model can be 
described in terms of only three dominating processes, namely creation and 
annihilation of kink-antikink pairs and drift of the kinks and antikinks. 
Such a simple description is not possible in the SOS model. The growth law 
proposed by Villain (32) in the context of healing of the rough surface of the 
terrace-kink-ledge model is quite different from the growth law we have 
observed for the SOS model. 

Note that all the qualitative features, including the linear growth of 
the interface length, are shared by the area of the interface in the three- 
dimensional SOS model (see Fig. 2). 

4.2. Length of  the Inter face in the Presence of Random Fields 

The log-log plots of 1 -L ( t ) /L (O)  versus t shown in Fig. 3 exhibit the 
breakdown of the linear growth law (4) in the presence of quenched 
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Fig. 2. Log-log plots of 1-A(t)/A(O) against t for the three-dimensional SOS model with 
N=64x64 at various temperatures T for several values of M: (• M= 16, T=0; 
(~) M=32, T=I.0; (O) M=64, T=I.0; (0) M=128, T=I.0; (�9 M=128, T=4.0; 
(11) M= 128, T= 8.0. Each of the data points was obtained by averaging over 100 quenches. 
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Fig. 4. Typical configurations f(i) of the interface for the SOS model with N =  10 
corresponding to three different configurations of the quenched field; the local field orien- 
tations are shown by the corresponding arrows, (a) The initial flat configuration. (b)-(d). The 
final configurations corresponding to the three different field configurations. 
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random fields. First of all, the qualitative nature of the curves for H>> T is 
similar to that in the case of the Glauber model in random field. (19'2~ Note 
also that there is a competition between the temperature T and the field H. 
At a fixed T, the higher is the field, the slower is the evolution. On the 
other hand, at a fixed H, the higher is the temperature, the faster is the 
evolution. It seems that the random field pins the interface. 

In order to demonstrate the pinning effect of the magnetic field, we 
consider four simple field configurations, as shown in Fig. 4. Figure 4a 
shows the interface function f(i), i =  1 ..... 10, at t = 0. Depending on the 
field configuration, the final (equilibrium) interfaces can be quite different 
from each other. For  example, if the field configuration is Hi = + H  for 
i =  1,..., 5 and H i = - -H  for i = 6,..., 10, then the equilibrium configuration 
f(i) looks like Fig. 4b. On the other hand, if the field Hi is + H and - H for 
even i and odd i, respectively, the equilibrium configuration f(i) looks like 
that shown in Fig. 4c. Finally, for a random field configuration the 
interface remains more or less pinned at its initial position (Fig. 4d). 

5. H O W  S H A R P  (OR S M E A R E D )  IS THE INTERFACE? 

Let us illustrate the concept with the SOS model as a simple example, 
although, more appropriately, it should be applied to models with more 
complex interfacial structure, e.g., the kinetic Ising model. For  a given 
interface z = f ( i ) ,  i = 1 ..... N, we call a site at a height h for i= k occupied if 
f(k)>~h, and empty otherwise. Let us begin with a random initial 
configuration for L = 64 with M =  20. We are interested in the quantity 
F(z), z = 0, 1, 2 ..... 20, where F(h) is the fraction of the sites occupied at the 
level z = h. The function F(z) is plotted in Fig. 5 at three intervals of time 
for two different temperatures. Note that the interface is perfectly sharp 
after sufficiently long time only at T =  0. At all nonzero temperatures the 
interface is smeared. The width at the half-maximum of F(z) can be taken 
as a measure of the diffuseness of the interface. However, note that a 
smeared interface does not neccessarily imply a rough interface. The usual 
measure of the roughness of an interface will be mentioned in the next 
section. 

6. H O W  W I D E  IS THE INTERFACE? 

The width of the interface W(t) at time t is defined by 

W(t) = ( l /N) If(i, t)--fm(t)]2)~ 
i ~ l  
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Fig. 5. The function F(h) (see the text for the definition) in the SOS model with N = 6 4 ,  
M = 20 for three successive instants of time: t = 0, 10, and 170. ( - - )  T =  0; ( - - - )  T =  8.0. Note 
that at T =  0, the final configuration at t = 170 is a step function because the interface is flat in 
equilibrium. 

wherefm(t) = ( I / N ) Z f ( i ,  t) is the mean position of the interface at time t 
and the brackets <. ) denote average over a large number of quenches. (28) 
In other words, the width W(t) is the root-mean-square height of the inter- 
face measured from the mean position of the interface at time t. Note that 
two equally wide configurations of the interface in the SOS model can have 
different lengths, as shown in Figs. 6a and 6b. The width of growing inter- 
faces of several different types of patterns has attracted attention over the 
last few years. The relation between the W(t) and N for an SOS model 
defines the roughness of the interface; if W diverges with increasing N, the 
interface is called rough. 

6.1. W id th  of  the Interface of the SOS Model  in the Absence 
of Random Field 

The time dependence of W(t) for the SOS model with finite size is 
shown in Fig. 7. The nonexponential decay is consistent with similar earlier 
observations for the Gaussian model. (331 
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Fig. 6. (a)-(c) Three finite segments of the interface in the SOS model. The interfaces in (a) 
and (b) have the same width, but different lengths. The interfaces in (b) and (c) are equally 
long, but the one in (c) is more regular than that in (b). (d}-(f) Some typical sites, marked by 
the crosses, along the interface of the SOS model with three dissimilar neighbors, two 
dissimilar neighbors, and one dissimilar neighbor, respectively. 
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Fig. 7. Semilog plots of g/(t)/W(O) against t for the SOS model with N =  1024 and 
M = 4 0 9 6  at three different temperatures T. Each of the data points was obtained by 
averaging over ten quenches. 
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6.2. W id th  of the Interface of the SOS Model  in the Presence 
of Random Field 

The time dependence of the interface in the presence of the random 
field is shown in Fig. 8 for several different values of H and T. Because of 
the pinning tendency of the random field, the lower is the temperature, the 
wider is the interface at a given time t. 

7. H O W  NOISY IS THE INTERFACE? 

An interface may be very regular (not necessarily fiat) or irregular. For 
example, the interface shown in Fig. 6c is perfectly regular, whereas that in 
Fig. 6b is irregular, although both these interfaces have equal lengths. The 
question we pose in this section is: how irregular or noisy is an interface at 
a given instant of time during its evolution? In order to answer this 
question, we need a unique definition of the amount of noise in an inter- 
facial pattern. 
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Fig. 8. Semilog plots of W(t)/W(O) against t for the SOS model with N=64,  M=230 for 
different values of H and T. The empty symbols correspond to T=0.25, whereas the filled 
symbols correspond to T= 1.0. Each of the data points is obtained by averaging over 100 
quenches. 
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7.1. Noise in an Interface. A Real-Space Description 

We have computed the distribution P(Af) of the quantity 
Af=2f (x ,  t ) - f ( x +  1, t ) - f ( x -  1, t) for all x as a function of time t. The 
broader and denser is the distribution P(Af), the noisier is the interface (a 
more precise definition of the noise level in an interface will be given in the 
next subsection). The distribution P(Af) is shown in Fig. 9 at increasing 
values of time t. Note that P(Af) narrows down with the increase of time t; 
the higher is the temperature, the slower is the narrowing. However, there 
is a fundamental difference between the nature of P(Af) at time t = oe for 
T =  0 and that for T >  0. Since the interface is not flat at finite T even at 
t = 0% P(Af) ---, 5(A f )  as t ~ oe only at T =  O. 

7.2. Noise in an Interface. A Fourier-Space Description 

Before defining a measure of the noise in an interface, let us describe 
the Fourier method of analyzing the structure of an interface. In the 

T=O 

t= 

~, r ] . . . .  
-4 0 4 

T:1.25 

Jk 

J \  
Fig. 9. The distribution P(A/') (see the text for the definition) at times t = 20, 35, and t = 90 

corresponding to two different temperatures T ~  0 and 1.25. 
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continuum (field) theories an interface at time t is defined as a function 
f(x; t), where x describes the continuum. The Fourier expansion of the 
function f(x; t) is given by 

f(x; t) = ~, ck(t) exp(ikx) 
k 

Therefore, the time evolution of the interface f(x; t) can be described in 
terms of the corresponding time evolution of the Fourier coefficients 
Ok(t). (34) Now we can define a measure of the noise level in an interfacial 
pattern. The larger is the number of plane wave modes with nonzero 
amplitudes q ,  the noisier is the interface. 

Let us now generalize the Fourier transform method appropriately for 
the discrete model (1). Our numerical technique is an extension of some of 
the conventional techniques used in the field of pattern recognition. Since 
computer simulations as well as other numerical investigations are carried 
out on a discrete lattice, it is more convenient to use the generalized 
Fourier transforms (in this case Walsh-Fourier  transform) where the 
exponential functions exp(ikx) are replaced by the Walsh functions. (35'36) 
The Walsh-Fourier  transform of a function f(x; t) is given by 

f(x; t) = ~, ak(t) Dk(x) 
k 

where Dk(X) ( k = 0 ,  1,2,...) are the Walsh functions defined over the 
interval - 1/2 ~< x <~ 1/2. Therefore, the time evolution of the interface on a 
discrete lattice can be described by the corresponding time evolution of the 
Walsh coefficients ak(t). In order to define the Walsh functions, let us 
introduce the operation symbolized by O. Let m and n be two integers. 
Then the operation m G n consists of the following steps: (a) Write m and 
n in the binary notation, and (b) add their corresponding digits using the 
modulo 2 arithmetic (logical operation EXCLUSIVE-OR). The modulo 2 
rule for summation is 0 G I = I O 0 = I  and 0 G 0 = I @ I = 0 .  Thus, 
5 0 1 =  1 0 1 0 0 0 1 - - 1 0 0 = 4 .  The Walsh functions Dk(X) ( k = 0 ,  1,...) are 
defined by Do(x) = 1 for all - 1/2 ~< x ~< 1/2: 

Dl(x) = sign(sin rex) 

Dp(X) = sign(cos prcx), p = 2 n (n > O) 

Dm| = Din(x) D,(x) 

For example, 

Dv(x)= Da(x) D2(x) D,(x), D12(x)= D,o(x) D6(x). 
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Walsh-Fourier  transform is particularly convenient for functions f(x) 
that are stepwise discontinuous functions on 2 q intervals. Let us consider 
the SOS model with L = 8, so that the height of the interface f(x) is a 
stepwise discontinuous function over 2 q intervals with q = 3. The interval of 
x can be squeezed or stretched within the interval ( - 1 / 2 ,  1/2), so that the 
x coordinates of the eight points i =  1, 2 ..... 8 are x = -1 /2 ,  - 3 / 8 ,  - 1/4, 
- 1 / 8 ,  1/8, 1/4, 3/8, and 1/2, respectively. The corresponding Walsh 
functions are shown in Fig. 10. The Walsh functions D(x) are related to the 
Sal functions DS(x) and Cal functions DC(x) (36) by the relations 

DS~(x) = D2. ,(x), DC.(x) = D2n(x) 

Note that Sal and Cal functions are the analogues of the sine and cosine 
functions, respectively. The fits of Sal and Cal functions with the 
corresponding sine and cosine functions are particularly good for the 
higher values of n. 

We have monitored the time dependence of the Walsh coefficients of 
the interface of the SOS model with N =  8. Some of these coefficients are 
shown in Fig. 1 I. Note that the interface of the SOS model is flat at t = oo 
only for T = 0 .  Therefore, a o ( ~ ) =  1 only at T = 0 .  Similar analysis of the 
noise level in a two-dimensional interface of the three-dimensional SOS 

D o  

D~ 
D~ I t -  
�9 - - I  I I 
D~ ] 1--1 s 
D ~ -J--]_J-] 

D~ ~ L ~ I _ $  - 

I I I 
-1/2 0 1/2 

Fig. 10. The Walsh [unctions Dk(x), k = 0, l ,  2 ..... 8, within the interval -- 1/2 ~< x ~< 1/2. Note 
that the larger is k, the closer is the Dk(x) to the corresponding sine function. 
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Fig. l l .  The Welsh coefficients a2, a3, and a 6 for the SOS model at T = 0  with N = 8 .  The 
open symbols correspond to M =  265, the closed symbols to M = 256 (the crosses denoting 
a0). Note that the heights were measured with respect to the mean height to obtain the open 
symbols, and therefore the corresponding a0 were zero at all t. 

model can also be carried out using the two-dimensional Walsh 
functions (35) Dm,(x, y) = Dm(x) D,(y). 

The flattening of sinusoidal grooved crystal surfaces has been studied 
theoretically and experimentally as well as by computer simulation over the 
last three decades/32'37 43) However, our model does not describe these 
experimental situations, not only because the initial interface is far from 
sinusoidal, but also because we neglect surface and bulk diffusion processes. 
However, we emphasize that our model can be generalized to incorporate 
these physical processes, and our basic techniques for analyzing the 
morphology can be used also for such generalized models. 

8. O C C U P A T I O N  OF T H E  LOCAL E N E R G Y  LEVELS BY T H E  
I N T E R F A C I A L  S P I N S  

Let us now focus on some local properties of the interface. Most of the 
methods described above characterize the morphology of the interface on a 
length scale much longer than the nearest neighbor distance. Of course, the 
analysis in terms of the Welsh functions probes the interface on a range of 
length scales, the smallest being the distance between the zeros of Dmax(X) ,  

where ak = 0 for all k > kma  x. In this section we describe a simple method 
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based on the local structure of the interface. In any pattern consisting of 
two different types of species one individual member  of one of the species 
may have neighbors belonging to the other species. Under those 
circumstances one can use a simple method for characterizing the 
morphology of the patterns during growth. For example, the morphology 
of the growing patterns during phase separation in binary alloys (Ising 
model on a discrete lattice with Kawasaki  spin-exchange dynamics) can be 
described by the fraction of sites Cn(t) with n dissimilar beighbors. In case 
of the Ising model on a square lattice, n can vary from n = 0 to n = 4. So far 
as only the sites along the interface of the SOS model are concerned, n 
varies between 1 and 3. We consider only the topmost  sites of each column 
just below the interface. Some typical configurations corresponding to 
n = 1, 2, and 3 are shown in Figs. 6d-6f. Accordingly, the interracial sites 
can be in one of the three energy levels (2n-4) J. Similar concepts have been 
utilized (44) for characterizing the crystal-vapor interface in terms of the 
"distribution of atoms over the surface energy levels." 

The time dependence of Cn(t) for the SOS model and the kinetic Ising 
model is shown in Figs. 12 and 13. Note that in this analysis we have not 
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The fractions Cl(t), C2(I), and C3(/) for the SOS model at T=0 with N=512. The 
closed symbols correspond to M = 128, the open symbols to M = 256. 
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Fig. 13. The log-log plots of C,(t) against t for the kinetic Ising model. Stars, circles, 
diamonds, and squares correspond to Co, C~, C2, and C3, respectively. The empty symbols 
correspond to T=0.45Tc and the filled symbols to T=0.9Tc, where Tc=2.269 is the 
transition temperature of the two-dimensional Ising model. Each of the data points is 
obtained by averaging over 100 quenches of systems with linear size L = 120. 

distinguished between the different geometric structures of the interface for 
a given n. Since occupation of these local energy levels is likely to be 
governed by the Boltzmann distribution, an exponential decay of the 
coefficients C,(t) would be expected. Our numerical data also seem to 
indicate an exponential decay of these coefficients. 

9. S U M M A R Y  A N D  C O N C L U S I O N  

Using the Monte Carlo simulation technique, we have computed 
several different quantities for characterizing the morphology of the 
growing interfacial pattern in one of the simplest models of interface, 
namely the SOS model. Some of these quantities are generalizations of 
older concepts in the literature. We have introduced some new concepts, 
e.g., the Walsh-Fourier transform, into the field of statistical physics. These 
quantities, or suitable generalizations, can be used to characterize the 
corresponding patterns in more complex systems. 

So far as the theoretical models of interfaces are concerned, the 
validity of the continuum interface Hamiltonians ~45~8) is limited to length 
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scales large enough so that (tVfl 2) is small compared to unity. (25~ On the 
other hand, in this work we have investigated the interface on all length 
scales between the lattice constant and the linear size of the system. 
Therefore, we cannot represent the interface during the early as well as 
intermediate stages of evolution by the continuum models obtained by 
"coarse-graining" the discrete interfaces. The continuum models describe 
"gently curved" interfaces and therefore may be applicable only to the late 
stages of evolution. 
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